

Main Objective

This project was awarded to University of Nebraska-Lincoln in order to detect, locate, and map pipeline defects by using low-cost inline inspecting rover and multispectrum computer vision. The developed technology can be applied to both piggable and un-piggable pipelines of different sizes.

Figure 1. top: traditional pig, bottom: proposed inspecting technology

Project Approach/Scope

- with slopes and turns was constructed to imitate the real-world inspection cases.
- field validations of the developed technology.

Figure 3. simulated pipeline plant with 14" diameter pipe.

Detecting, Locating and Mapping Internal Gas Pipeline Corrosion using Thermography and Photogrammetry

Chongsheng Cheng, Zhexiong Shang, Gabriel Clark, and Zhigang Shen **Durham School of Architectural Engineering and Construction University of Nebraska-Lincoln**

Figure 2. the target internal corrosions (images from internet)

• The primary research approach is experimental with a small portion of simulations. Testbed

• The scope of work includes: (1) design and prototype the testbed and the inspecting rover systems; (2) design, test, and validate the detecting, locating and mapping algorithms; (3)

Figure 4. section of steel pipe for IR detection.

Results to Date

- Simultaneous localization and mapping (SLAM) algorithms were experimented to reconstruct the 3D pipeline model for locating and mapping defects. The outcomes is illustrated in Figure 5.
- Infrared thermography (IRT) results indicated that it can detect thermal irregularity features in low light pipe conditions with temperature gradient on the pipe wall.

Figure 5. photogrammetry results of the rover on the testbed.

Acknowledgments

This project is funded by DOT/PHMSA's Competitive Academic Agreement Program under contract: 693JK31850013CAAP

References

Lan, J., Li, J., Hu, G., Ran, B., & Wang, L. (2014). Vehicle speed measurement based on gray constraint optical flow algorithm. Optik, 125(1), 289-295.

Chaczykowski, M. (2010). Transient flow in natural gas pipeline–The effect of pipeline thermal model. Applied Mathematical Modelling, 34(4), 1051-1067.

Marinetti, S., & Vavilov, V. (2010). IR thermographic detection and characterization of hidden corrosion in metals: General analysis. Corrosion science, 52(3), 865-872.

Public Project Page

Please visit the below URL for much more information: https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=791

Figure 6. thermographic results under different conditions.